In this post, we are going to learn how to detect and track different body parts in a live video stream.
OpenCV Recipes:处理视频流
In this post, we are going to learn how to convert an image into a cartoon-like image.
OpenCV Recipes:边缘检测与图像过滤
In this post, we are going to see how to apply cool visual effects to images.
OpenCV Recipes:图像的几何变换
In this post, we are going to learn how to apply cool geometric effects to images.
Jaya 优化算法及其变体
本章详细介绍了 TLBO 算法、NSTLBO 算法、Jaya 算法及其变种——自适应 Jaya、拟反向 Jaya、自适应多种群 Jaya、自适应多种群精英策略 Jaya、混沌 Jaya、多目标 Jaya 和多目标拟反向 Jaya。文中举例说明了 Jaya 算法及其变体在无约束和有约束单目标和多目标优化问题中的应用。还描述了覆盖率、间距和超体积三个性能指标来评估多目标优化算法的性能。
萤火虫算法
自然启发式的元启发式算法,特别是基于群体智能的,在过去的 10 年中备受关注。萤火虫算法(firefly algorithm,FA)出现于 2008 年,相关文献随着应用的不断扩大而显著扩大。在本章中,我们首先介绍标准萤火虫算法,然后简要回顾一下变体。我们还分析了 FA 的特点,并试图回答 FA 为什么如此有效的问题。
遗传算法
就其应用的多样性而言,遗传算法是最受欢迎的进化算法之一。遗传算法已经被尝试用于绝大多数众所周知的优化问题。另外,遗传算法是基于群体的,许多现代的进化算法直接基于遗传算法或具有一些强烈的相似性。
模拟退火
最早但最流行的元启发式算法之一是模拟退火(simulated annealing,SA),它是一种基于轨迹的全局优化随机搜索技术。它模仿金属材料加工中的退火过程,当金属以最小的能量、较大的晶体尺寸冷却并冻结成结晶状态时,可以减少金属结构中的缺陷。退火过程包括仔细地控制温度和冷却速度,通常称为退火制度(annealing schedule)。 SA 已经成功应用于许多领域。
自调整算法框架
算法的性能在很大程度上取决于算法相关的参数设置。最佳设置应是算法在解决一系列优化问题时都能获得最佳性能。然而,这种参数调整本身就是一个棘手的优化问题。在这一章中,我们提出了一个自调整算法的框架,使得一个要调参的算法能够调节算法自身。
随机行走与最优化
通过分析元启发式算法的主要特点,我们知道随机化在探索和开发,或者多样化和集中化中都起着重要的作用。在大多数情况下,随机化是通过从均匀分布或高斯正态分布得到的简单随机数来实现的。在其他情况下,会使用更复杂的随机化技术,如:随机行走和 Lévy 飞行。本章简要回顾了随机行走的基本思想和理论、Lévy 飞行和马尔可夫链。我们还讨论初始化、步长、算法效率和鹰策略。这有助于我们了解自然启发式算法的工作机制。